Acta Crystallographica Section B
Structural
Science
ISSN 0108-7681

Novel infinite three-dimensional network of neutral fullerene molecules in $\left(\mathrm{C}_{60}\right)_{8}(\text { twin-TDAS })_{6}$

Alain Penicaud, ${ }^{\text {a * Kamal }}$ Boubekeur, ${ }^{\text {b }}$ Alexander I. Kotov ${ }^{\text {c }}$ and Eduard B. Yagubskii ${ }^{\text {c }}$

${ }^{\text {a }}$ Centre de Recherche Paul Pascal - CNRS, Université de Bordeaux-I, Av. Schweitzer, 33600 Pessac, France, ${ }^{\text {b }}$ Institut Jean Rouxel CNRS, Université de Nantes, 2 rue de la Houssinière, BP 32229, 44322 Nantes CEDEX 03, France, and ${ }^{\text {c }}$ Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 142432 Moscow Region, Russian Federation

Correspondence e-mail:

penicaud@crpp.u-bordeaux.fr
(C) 2000 International Union of Crystallography Printed in Great Britain - all rights reserved

The crystal structure of $\left(\mathrm{C}_{60}\right)_{8}(\text { twin-TDAS })_{6}[$ twin-TDAS $=$ $\mathrm{C}_{4} \mathrm{~S}_{6} \mathrm{~N}_{4}=3,3^{\prime}, 4,4^{\prime}$-tetrathiobis(1,2,5-thiadiazole)] has been redetermined at low temperature in the correct space group [I23, $a=18.849$ (1) A]. Structural analysis reveals a novel three-dimensional close-contact network of C_{60} molecules with tetrahedral holes similar to pristine C_{60}.

1. Introduction

The synthesis and X-ray study of $\left(\mathrm{C}_{60}\right)_{8}\left(\mathrm{C}_{4} \mathrm{~S}_{6} \mathrm{~N}_{4}\right)_{6}$, octa $([60]-$ fullerene)hexa[3,3',4,4'tetrathiobis($1,2,5$-thiadiazole)], was published some years ago by two of us and collaborators (Kotov et al., 1994). Some ambiguities remained, however, and prompted us to reexamine the crystal structure. We report here on the full structural resolution in the correct space group $\left(I 2_{3}\right)$. An in-depth study of the crystal architecture reveals a novel, extended, three-dimensional network of polyhedral clusters $\left(\mathrm{C}_{60}\right)_{8}$. After the successful doping of solid C_{60} with alkali and alkaline earth metals (Rosseinsky, 1998), new structural types of C_{60} solids with electronic properties were discovered with polymeric C_{60} salts such as $A_{1} \mathrm{C}_{60}(A=\mathrm{K}, \mathrm{Rb}$, Cs; Pekker et al., 1994) and $\mathrm{Na}_{2} \mathrm{RbC}_{60}$ (Rosseinsky et al., 1992). In the on-going search for new C_{60} supramolecular architectures, another type of C_{60} network, stabilized by $\mathrm{N}-\mathrm{H} \cdots \pi$ interactions has recently been reported (Fowkes et al., 1997).

The crystal structure was originally described in the orthorhombic space group 1222 with parameters $a=$ 19.007 (8), $b=19.024$ (9) and $c=18.991$ (7) \AA (Kotov et al., 1994). Interatomic distances within C_{60} ranged from 1.09 (3) to 1.49 (3) Å for 6,6 bonds and from 1.31 to $1.67 \AA$ for 5,6 bonds, to be compared with standard values of 1.40 and $1.46 \AA$ for neutral C Co $_{60}$ (Dresselhaus et al., 1996). Buckyball diameters ranged from 6.90 to $7.12 \AA$. These abnormally wide distributions of values prompted us to reconsider the space-group assignment, considering cubic symmetry. However, structural resolution in cubic symmetry at room temperature did not significantly improve the data, owing to high vibrations of the fullerene C atoms. Thus, new data were collected at low temperature (100 K).

2. Experimental

Single crystals of the title compound were grown according to Kotov et al. (1994) and measured on a Stoe imaging plate equipped with a cold nitrogen stream. Careful examination of the data allowed an unambiguous assignment of the cubic

Table 1
Experimental details.

Crystal data

Chemical formula
Chemical formula weight
Cell setting
Space group
$a, b, c(\AA)$
$V\left(\AA^{3}\right)$
Z
$D_{x}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$
Radiation type
Wavelength (A)
No. of reflections for cell parameters
θ range $\left({ }^{\circ}\right)$
$\mu\left(\mathrm{mm}^{-1}\right)$
Temperature (K)
Crystal form
Crystal size (mm)
Crystal colour
Data collection
Diffractometer
Data collection method Absorption correction
$\quad T_{\min }$
$\quad T_{\max }$
No. of measured r
No. of independen
No. of observed re
Criterion for obse
$R_{\text {int }}$
$\theta_{\max }\left({ }^{\circ}\right)$
Range of h, k, l

Refinement
Refinement on
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$
$w R\left(F^{2}\right)$
S
No. of reflections used in refinement
No. of parameters used
Weighting scheme
$(\Delta / \sigma)_{\max }$
$\Delta \rho_{\text {max }}\left(\mathrm{e} \AA^{-3}\right)$
$\Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
Extinction method
Source of atomic scattering factors

Computer programs
Data collection
Cell refinement
Data reduction
Structure solution
Structure refinement
Preparation of material for publication

```
C
7543.44
Cubic
I23
18.8492 (10)
6697.0 (6)
1
1 . 8 7 0
Mo K\alpha
0.71073
5000
1.45-25.15
0.380
100 (2)
Plate-like
0.37\times0.27\times0.23
Black
```

Stoe IPDS
Rotation, $\Delta \varphi=1.2^{\circ}$ scans
ABSCOR (Stoe \& Cie, 1996)
0.871
0.916

12851
1764
1243
$I>2 \sigma(I)$
0.0143
25.15
$-14 \rightarrow h \rightarrow 14$
$0 \rightarrow k \rightarrow 15$
$2 \rightarrow l \rightarrow 21$

```
F
0.0456
0 . 1 0 4 5
0 . 6 1 3
1764
213
w=1/[\mp@subsup{\sigma}{}{2}(\mp@subsup{F}{o}{}\mp@subsup{}{}{2})+(0.1321P\mp@subsup{)}{}{2}],\mathrm{ where}
    P=(\mp@subsup{F}{o}{}\mp@subsup{}{}{2}+2\mp@subsup{F}{c}{2})/3
0.001
0 . 4 5 6
-0.224
None
International Tables for Crystallo-
    graphy (1992, Vol. C, Tables
    4.2.6.8 and 6.1.1.4)
```

EXPOSE (Stoe \& Cie, 1996)
SELECT (Stoe \& Cie, 1996)
INTEGRATE (Stoe \& Cie, 1996)
SHELXS86 (Sheldrick, 1990)
SHELXL97 (Sheldrick, 1997)
SHELXL97 (Sheldrick, 1997)

Laue symmetry $m \overline{3}$ and the structure was successfully resolved in the space group I23. The number of Friedel pairs of reflections was 790. Experimental details are given in Table 1. ${ }^{\mathbf{1}}$

[^0]
3. Results

3.1. Crystal packing

The asymmetric unit is comprised of one fourth of a twinTDAS [twin-TDAS $=\mathrm{C}_{4} \mathrm{~S}_{6} \mathrm{~N}_{4}=3,3^{\prime}, 4,4^{\prime}$-tetrathiobis(1,2,5thiadiazole)] molecule (situated on a site with 222 symmetry) and one third of a C_{60} molecule (situated on a threefold axis). The unit cell is shown in Fig. 1. To better understand the crystal architecture, the best way is to focus on the C_{60} packing. One can view the structure as a cubic (I-centred) network of $\left(\mathrm{C}_{60}\right)_{4}$ tetrahedra (Fig. 2). An apex of one such (inner) tetrahedron (centred at say $0,0,0$) is in close contact with the three C_{60} 's forming a face of the neighbouring tetrahedron centred at $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$. These close contacts thus form four new (outer) tetrahedra around each inner tetrahedron leading to interconnected $\left(\mathrm{C}_{60}\right)_{8}$ clusters (Fig. 3). The inner tetrahedra are regular, with sides of $10.055 \AA$ (centre-tocentre distance), whereas the outer ones (sharing three sides of $10.055 \AA$ with the inner tetrahedra) have three extra sides of length $9.977 \AA$. The resulting assembly of five tetrahedra is a polyhedron (one per unit cell) and, in fact, a member of the infinite family of concave deltahedra, polyhedra bordered by triangular faces. It is called an omnicapped tetrahedron (Fig. $4 a)$ and bears two different types of apices: six-coordinated (the four apices of the core tetrahedron) and three-coordinated (the outer four). In the crystal structure of $\left(\mathrm{C}_{60}\right)_{8}\left(\mathrm{C}_{4} \mathrm{~S}_{6} \mathrm{~N}_{4}\right)_{6}$, a six-coordinated apex of one omnicapped tetrahedron is a three-coordinated apex of the neighbouring one. Thus, all C_{60} sites are equivalent. Empty spaces are found in between those $\left(\mathrm{C}_{60}\right)_{8}$ clusters which are occupied by TDAS molecules (centres of the unit cell faces and edges, Fig. 1).

Are there sites available for doping? $\left(\mathrm{C}_{60}\right)_{8}\left(\mathrm{C}_{4} \mathrm{~S}_{6} \mathrm{~N}_{4}\right)_{6}$ is composed of tetrahedra of C_{60}, so naturally, akin to pristine C_{60}, there are sites available for doping. Two types are readily identified. Site A (at $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$) is formed by the central regular

Figure 1
Projection of the unit cell along the [111] direction.
tetrahedron. Site B (at $0.6235,0.6235,0.6235$) is pseudotetrahedral: it is formed by the four outer tetrahedra of the omnicapped tetrahedron. Sites A and B are of slightly different size, with respective radii of 1.16 and $1.13 \AA$, yielding a 8% difference in volume. Stoichiometries are extremely interesting: there are one A site and four B sites per $\left(\mathrm{C}_{60}\right)_{8}$ cluster. Therefore, even full occupation of all sites would not lead to a formal charge of $1-$, but $0.625-$, opening the way to mixed-valence fulleride salts.

3.2. Molecular structures

Twin-TDAS is represented in Fig. 5. The angle between the two $\mathrm{SN}_{2} \mathrm{C}_{2}$ rings is $48.45(15)^{\circ}$. The numbering scheme and vibration ellipsoids for C_{60} are shown in Fig. 6. Interatomic

Figure 2
Inner (solid lines) and outer tetrahedra (dashed lines). For the sake of clarity, only two inner tetrahedra are shown and the outer one linking them.

Figure 3
The $\left(\mathrm{C}_{60}\right)_{8}$ omnicapped tetrahedron (projected $c a .20^{\circ}$ away from the [110] direction).
parameters now have the usual values [diameters: $\min =7.051$, $\max =7.085$, av. $=7.07(1) \AA, d(6,6): \min =1.32(1), \max =$ 1.43 (1), av. $=1.37$ (4) $\AA, d(5,6): \min =1.40(1), \max =1.52(1)$, av. $=1.46$ (4) $\AA]$. Vibration ellipsoids have a disk-like shape oriented tangentially to the C_{60} surface. Given the shape of the fullerene molecule, these ellipsoids intuitively reflect the local atomic motions and indeed they have come to be an indication of a well behaved fullerene structure.

3.3. Intermolecular interactions

$\mathrm{C}_{60}-\mathrm{C}_{60}$ interactions are of the type bond $(5,6)$-overhexagon with short distances ranging from 3.31 to $3.63 \AA$. Twin-TDAS/C60 interactions show a neat key-to-the-lock packing and involve mainly one bond on each molecule crossing at right angles ($\mathrm{C} 12-\mathrm{C} 16$ and $\mathrm{N} 1-\mathrm{S} 1$) with distances ranging from 3.547 (6) to 3.577 (7) \AA. The shortest contact between twin-TDAS molecules is S1-S2 [3.677 (6) Å].

4. Discussion

The prototypical neutral fullerene matrix is, of course, C_{60} itself. Doping of this neutral matrix with alkali and alkalineearth metals has led to a large, albeit limited, number of compounds (Rosseinsky, 1998). $\left(\mathrm{C}_{60}\right)_{8}\left(\mathrm{C}_{4} \mathrm{~S}_{6} \mathrm{~N}_{4}\right)_{6}$ is another example of a neutral fullerene matrix. In the latter, it is useful to consider as the basic unit not C_{60}, but the omnicapped tetrahedron $\left(\mathrm{C}_{60}\right)_{8}$. The problem of the densest packing of n (finite) spheres is not trivial. Sloane et al. (1995), using the criterion of minimal second moment, showed that, for $n=8$,

Figure 4
(a) Omnicapped tetrahedron; (b) snub disphenoid.

Figure 5

Twin-TDAS numbering scheme, vibration ellipsoids and bond distances.

Figure 6
C_{60} numbering scheme and vibration ellipsoids.
the solution is the (convex) snub disphenoid (Fig. $4 b, V=$ $0.86 l^{3}$, where l is the edge length). The omnicapped tetrahedron (Fig. 4a) present in $\left(\mathrm{C}_{60}\right)_{8}\left(\mathrm{C}_{4} \mathrm{~S}_{6} \mathrm{~N}_{4}\right)_{6}$ is a concave solution ($V=0.59 l^{3}$). Packing forces, or the key-to-the lock principle of Kitaigorodsky (1984), are surely responsible for the observation of the latter rather than the former. We are thus in the presence of a three-dimensional network of
nanoclusters of C_{60} molecules, showing that the first condition for cooperative properties (extended network of C_{60} 's in contact) can be fulfilled in neutral mixed crystals of fullerenes.

AP thanks M. A. Leyva for help at the early stage of this work and Rolf Asmund for calculations of the snub disphenoid and omnicapped tetrahedron volumes.

References

Dresselhaus, M. S., Dresselhaus, G. \& Eklund, P. C. (1996). Science of Fullerenes and Carbon Nanotubes, p. 60. New York: Academic Press.
Fowkes, A. J., Fox, J. M., Henry, P. F., Heyes, S. J. \& Rosseinsky, M. J. (1997). J. Am. Chem. Soc. 119, 10413-10423.

Kitaigorodsky, A. I. (1984). Mixed Crystals, Springer Series in Solid State Sciences 33. Berlin: Springer-Verlag.
Kotov, A. I., Konovalikhin, S. V., Pisarev, R. V., Shilov, G. V., Dyachenko, O. A. \& Yagubskii, E. B. (1994). Mendeleev Commun. pp. 180-182.
Pekker, S., Jánossy, A., Mihaly, L., Chauvet, O., Carrard, M. \& Forró, L. (1994). Science, 265, 1077-1078.

Rosseinsky, M. J. (1998). Chem. Mater. 10, 2665-2685.
Rosseinsky, M. J., Murphy, D. W., Fleming, R. M., Tycko, R., Ramirez, A. P., Siegrist, T., Dabbagh, G. \& Barret, S. E. (1992). Nature, 356, 416-418.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sloane, N. J. A., Hardin, R. H., Duff, T. D. S. \& Conway, J. H. (1995). Discrete Comput. Geom. 14, 237-259.
Stoe \& Cie (1996). STOE IPDS Software, Version 2.75. Stoe \& Cie, Darmstadt, Germany.

[^0]: ${ }^{1}$ Supplementary data for this paper are available from the IUCr electronic archives (Reference: CF0010). Services for accessing these data are described at the back of the journal.

